

Cooking Up An Open Source EMR For Developing Countries:
OpenMRS – A Recipe For Successful Collaboration

Burke W. Mamlin, M.D. †‡, Paul G. Biondich, M.D., M.S. †‡, Ben A. Wolfe†,

Hamish Fraser, M.B. Ch.B., M.Sc. §, Darius Jazayeri§, Christian Allen§,
Justin Miranda§, William M. Tierney, M.D. †‡

†Regenstrief Institute, Inc., ‡Indiana University School of Medicine, §Partners In Health

ABSTRACT
Millions of people continue to die each year from
HIV/AIDS. The majority of infected persons (>95%)
live in the developing world. A worthy response to
this pandemic will require coordinated, scalable, and
flexible information systems. We describe the
OpenMRS system, an open source, collaborative
effort that can serve as a foundation for EMR
development in developing countries. We report our
progress to date, lessons learned, and future
directions.
INTRODUCTION
Our world continues to be ravaged by a pandemic of
epic proportions. Over 40 million people are infected
with or dying from HIV. The vast majority of these
people (up to 95%) are in developing countries. In
2005, over 3 million people died from AIDS. The
brutality of this pandemic demands rapid and
coordinated efforts toward prevention and treatment.
In 2004, we (BWM & PGB) began as consultants,
asked to scale up an MS Access®-based system in
western Kenya. Our response was to design and
develop the AMPATH Medical Record System
(AMRS).1
One year later, we began a collaborative effort
between teams at Regenstrief Institute in Indianapolis
and Partners In Health (PIH) in Boston. Regenstrief
was developing the AMRS for an HIV/AIDS project
in western Kenya and PIH was supporting existing
projects in Peru and Haiti initially focused on TB but
expanding into HIV/AIDS.2 We quickly learned that
our approaches and data models shared more
similarities than differences and embarked on a
collaborative effort to build a foundation which could
be shared by both efforts and, hopefully, fuel a larger
collaboration throughout developing countries. We
coined the name OpenMRS for our collaborative
project.
OPENMRS
OpenMRS (openmrs.org) represents our earnest
attempt to create the foundation for collaborative
EMR development within developing countries.
When we began our work on this project in early
2004, we evaluated other work in this arena. We

believe the overwhelming need for basic clinical data
management (often to provide data to funding
agencies) along with the need for rapid response in
the face of limited technical resources led to many
disparate, "stovepipe" efforts which often stored non-
coded values and rarely scaled well.
To combat these challenges, OpenMRS aims to
provide the foundation and "building blocks" from
which fledgling implementations can begin
constructing health information systems to meet
specific needs. Admittedly, as a fledgling effort,
we’re just another stovepipe; but we hope that by
using freely available tools, employing modular
design techniques, and sharing our work, we can seed
something bigger. We’re excited about our progress
to date and the hunger for collaboration that we have
found among other upstart initiatives in the field.
There are many components which compose a basic
OpenMRS implementation.
THE COLLABORATION
OpenMRS is more than just software or a data model.
One of the more powerful and exciting aspects of
OpenMRS is the collaboration we’ve enjoyed,
initially with PIH and, more recently, with teams like
KwaZulu-Natal in South Africa. These relationships
have been nurtured, in part, through support from the
WHO, the Rockefeller Foundation, and the
President’s Emergency Plan for AIDS Relief
(PEPFAR).
We worked collectively to construct a core
application programming interface (API) around the
data model and build up a framework for a web-
based application running above the API. We
leveraged weekly conferences calls, mailing lists, a
wiki site, a code versioning system, and project
tracking software to manage the collaboration. We
have also tried to keep the core group of developers
relatively small, especially at the early stages of
collaboration.
DATA MODEL
We designed an enterprise-quality data repository
modeled upon the lessons learned in the 30-year
history of the Regenstrief Medical Record system.
The data model is patient-centric and conforms fairly

AMIA 2006 Symposium Proceedings Page - 529

well to standard HL7 representations of observations,
encounters, etc. It incorporates room for
internationalization and is tightly constrained to
guard against invalid data. At the heart of the data
model is a concept dictionary with flexible semantic
relationships and significant context-dependent
metadata that is used in various ways throughout the
application. The OpenMRS data model has been
described elsewhere and is available in more detail
online at openmrs.org.1
API
A tightly constrained and scalable relational data
model is inherently complex. OpenMRS hides much
of the complexity within an API, which greatly
reduces the upfront barriers inherent in writing code
to realize transactions within the database.
Developers need not worry about all of the
constraints and details required for manipulating the
data model, but rather can reference database query
functions such as: “getObservations(patient)”.
The OpenMRS API is built in Java with an eye on
service-oriented architecture. Its development has
been aided by the use of the Eclipse (eclipse.org) IDE
for Java, Subversion (subversion.tigris.org) for
version control, and Hibernate (hibernate.org) as an
object/relational persistence layer between Java and
the data model.
WEB APPLICATION
We created a web-based front end for access to and
management of the database. This includes a full
gamut of content and data management utilities
needed to build and maintain the repository – e.g.,
concept dictionary management, clinical data
management, user management, role/privilege
management, and form management.
The web application is written in Java, JSP, and
HTML, using the Spring Framework
(springframework.org) for MVC design and
internationalization and DWR (getahead.ltd.uk/dwr)
for AJAX-based bridging between client-side
JavaScript and server-based Java.*
STANDARDS SUPPORT
OpenMRS uses HL7 as the primary mode of
transmitting data between external applications and
the repository. This promotes re-usability and
interoperability. The system also supports and stores
mappings between local concepts and existing
standards, such as LOINC, ICD-10, SNOMED, and
CPT.

* Asynchronous JavaScript And XML (AJAX) is a web
development technique for creating interactive web applications.
See http://en.wikipedia.org/wiki/AJAX.

DECISION SUPPORT AND REPORTING
The tragic scale of the HIV pandemic demands that
increasingly more care be delivered by providers with
less training – even, at times, by fellow patients.3
The ability to deliver quality guidance to providers
through decision support has never been more critical
than in this setting.
We are building a full v2.5 Arden syntax rule builder
and interpreter/compiler engine which will be applied
through the repository to drive not only alerts and
reminders, but also complex concept definitions and
research tools. Our goal is for these rules to become
a fluid feature of the API – e.g., concepts such as
“PEAK FLOW” and “ASTHMATIC” are requested
through the same API call, yet “PEAK FLOW”
returns a simple observation while “ASTHMATIC”
calculates a derived concept that represents an
amalgam of existing diagnoses, peak flow
measurements, etc.
The decision support logic will most often be called
during report generation. OpenMRS provides
reporting features through patient-level abstracts and
aggregate reports. We use the template engine of
Velocity (jakarta.apache.org/velocity/) to provide
template-based report definition.
OCC
The OpenMRS Concept Co-op (OCC) is a
clearinghouse that manages links between all of the
vocabularies of OpenMRS participants. The OCC
serves as an important starting point for new projects,
looking to get a head start on vocabulary
development, and will also serve as the platform for
mapping concepts between systems and to
standardized vocabularies such as LOINC, ICD-10,
SNOMED, and CPT.
The OpenMRS concept management interface will
integrate calls to the OCC to aid content developers
in concept development. Local implementations will
be able to publish any concepts they wish to the
OCC, contributing their mappings to the co-
operative, benefiting from any mappings performed
by others, and simplifying the process of sharing data
between implementations.
DATA-DRIVEN FORMS
Of course, reports are only as good as the data from
which they are derived. Before we can take
advantage of OpenMRS’ reporting mechanism, we
must get data into the system. OpenMRS approaches
data entry with the flexibility and scalability of data-
driven forms. Forms are defined as a collection of
data pointers – more specifically concepts and/or
database attributes (e.g., patient demographics). This
collection serves as a schema – in the case of our first
data entry module, an XML Schema – describing the

AMIA 2006 Symposium Proceedings Page - 530

data to be gathered for the form (the form’s
“model”). How the form’s model is used to gather
data is up to the data entry application.
Data-driven forms provide the power to create and
design forms without programming. Our goal is to
take form design out of the programmers’ hands and
put it into the realm of content management, much as
form-generation tools (like Ruby on Rails or Plone’s
Archetypes) aid the developer in rapidly generating
forms.
Our first stab at data entry uses Microsoft® Office
2003’s InfoPath® tool for form design and form
completion. We found the thicker client interface
afforded by InfoPath® to be a better experience that
was not yet easily matched by browser-based
technologies such as AJAX. We were also attracted
by InfoPath’s ability to save form data as discrete
files – a feature we could use to for remote data
entry. In any case, not only InfoPath®, but also
several other solutions are rapidly evolving toward a
richer client experience for web-based applications.
Our options for data entry tools will only increase
over time.
OPEN SOURCE
OpenMRS comprises, almost entirely, open source
components and is itself available for public
consumption through open source licensing. We do
not advocate open source as an alternative to
commercial products; rather, we have chosen open
source technologies where they could meet our needs
in order to reduce the barriers to adoption. Our goal
is to allow projects to visit our website, download the
platform, and get started immediately at little to no
up-front cost, helping to foster a collaborative
development community.
PROGRESS REPORT
When we described our early work at AMIA 2005,
we laid down a series of nine design goals.1 Here, we
cover each of our goals and how we’ve done in
meeting them: the successes and the challenges
we’ve faced.
1. Collaboration – systems need to be developed
openly and built upon a common infrastructure, the
sharing of "best of breed" modules can best occur
within a shared platform
We switched from Zope (a python-based portal that
supported the original AMRS) to Java as our
development environment. We decided on Java,
primarily because the language works well in a
collaborative development environment by aiding
good coding practices and normalizing coding styles,
It also had some practical advantages (PIH’s
experience in Java, large existing base of potential
Java developers in the community). . The teams

discussed and shaped the data model and then
constructed an API that effectively wraps the data
model within DAO and Services layers. The initial
suite of application modules includes a registration
and data entry module (FormEntry) along with a HL7
interface from one team, an Arden Syntax module
from another team and a reporting module and
messaging/event module from yet another team.
There has been little redundancy in efforts, which has
made collaboration easier thus far.
The collaboration has been greatly aided by regular
communication, including weekly conference calls, a
mailing list, a wiki, and a simple, yet elegant project
management system (edgewall.com/trac/).
While collaboration was easier at first, we’ve
encountered some challenges while scaling up.
Changes to the data model are more difficult to
implement once multiple implementations are in use.
We’ve also found increasing energy is required to
coordinate efforts and align design goals amongst
multiple teams as the infrastructure’s scope grows.
There has also been a tension between bringing more
developers on board and getting overwhelmed by the
number of voices.
Thus far, we have enjoyed the process of
collaboration and OpenMRS has been much better
served for it. Our efforts invested in collaboration
have already begun paying dividends.
2. Scalability – the infrastructure must not only
handle thousands of patients and hundreds of
thousands of observations, but also be scalable to
tens of thousands of patients and millions of
observations
The best test of scalability is proven usability in the
field. Admittedly, OpenMRS is young. Despite its
youth, we have entered thousands of patient
encounters with a surprising lack of problems. We
owe this, in large part, to the fact that OpenMRS' data
model design was fashioned from proven, large-scale
systems.
Scaling up comes with its own challenges. Large
scale systems require enterprise-quality design. For
example, as we adopted Hibernate as a persistence
layer, we were initially performing our database
transactions within the database layer. As we began
scaling up, this proved unsustainable and required a
re-design to allow for transactions to occur at an
application level, above the service layer.
3. Flexibility – systems must support not only HIV-
centered care, but also general medical care, since
clinical care is not limited to HIV
To date, our content has focused only on HIV- and
TB-specific care. While our content (initial concepts,
forms, and reports) are HIV- and TB-centered,

AMIA 2006 Symposium Proceedings Page - 531

there’s nothing about the code or infrastructure that
limits us to these domains.
4. Rapid form design – data collection needs are a
moving target; therefore, form design and
deployment must allow for continual change
In most of our sites, clinicians are completing paper
forms which are collected and sent for data entry (or
entered on site) before returning to the patient’s chart.
OpenMRS must keep up with changes to existing
forms and allow for newly introduced forms. Also,
adding this information to the system must not delay
revisions to the paper forms. By using data-driven
forms within OpenMRS, changes to forms are made
without programming, facilitating a rapid response.
One of the early challenges we faced with form
design was simply the need to organize and
coordinate efforts so that all affected parties were
aware of changes. For example, simply adding
version numbers to forms and creating an official
“Form Approval” committee has helped smooth the
process. More challenges lie ahead. As multiple
implementations start using forms, there will likely
be a desire to share forms between institutions. Since
the forms comprise implementation-specific
concepts, these components must be “translated”
from one implementation to the next. Our hope is the
OCC will facilitate the mappings needed for such a
process.
5. Clinically useful – feedback to providers and
caregivers is critical – if the system is not clinically
useful, it will not be used
Our first task after getting data into the system was
getting it back into the hands of those who generated
the data – that is, the clinicians in the field. This
prioritization is driven by three beliefs: (1) clinical
summaries and decision support can improve patient
care (our primary aim), (2) all other parties –
including those looking for aggregate data – will best
be served by reliable, coded data, and (3) maintaining
quality within the data relies, in large part, on getting
data back into the hands of those generating the data
– i.e., errors in data entry are most likely to be
recognized by the providers caring for individual
patients.
The challenge will be keeping all parties happy.
Clinicians must genuinely recognize the value of the
data they’re producing and governmental and funding
agencies must be satisfied with their interval reports.
We believe our best chance of pleasing everyone is
through the collection of highly coded, quality data.
6. Use of standards – to maximize the flexibility and
extensibility of the system
We have adopted several standards within the
OpenMRS system. We rely heavily on XML, XSLT

for representation of data outside of the system and
for presentation of data. We have also targeted HL7
as a medium for transmission of data into and out of
the system. In fact, we’re working on a WHO and
CDC-sponsored pilot to demonstrate the feasibility of
using HL7 and vocabulary standards to transmit a
minimum dataset for HIV care between OpenMRS
and another independent system (Care-Ware).
The primary challenge for using standards is the
simple faith that the additional energy expended in
supporting a standard returns values greater than the
cost. In an environment where re-usability and
collaboration are the rungs to our ladder, we have no
choice but to embrace standards whenever possible.
7. Support high-quality research – via non-
ambiguous, coded data
Nearly all data collected by OpenMRS is coded.
While OpenMRS can accept non-coded observations
(e.g., narrative reports), we have avoided these in the
early phases of data collection, since our primary
source of data is checkboxes on paper forms.
Getting quality coded data into the system is highly
dependent on the quality of data collected in the field.
One of our early challenges was trying to convert
ambiguous questions on the existing paper forms into
non-ambiguous coded concepts. We used clinicians,
researchers, data managers, and informaticians to
refine our paper encounter forms, focusing on
reducing ambiguity, increasing quality, maximizing
the efficiency of data collection. Once the questions
and answers on the paper encounter forms were
disambiguated, created coded concepts for them was
relatively straightforward.
OpenMRS helps content managers avoid ambiguous
concepts by providing simple tools during concept
development that search for similar concepts or look
up definitions online. We expect the OCC to aid in
non-ambiguous concept development as well. To aid
in research, OpenMRS allows data managers to
define cohorts of patients and select observations of
interest which can then be exported into a flat file for
analysis and reporting purposes.
8. Web-based with support for intermittent
connections – developing countries do not always
have reliable power or internet connections, but
when available, internet-based technologies offer
increased scalability
While the OpenMRS database and surrounding API
do not rely on a web-based front-end, the core
application and all modules to date are managed
through a web-based interface. All content and
interaction is served through SSL connections for
security. So, with reasonably fast internet
connections, remote data entry can be performed

AMIA 2006 Symposium Proceedings Page - 532

today over any distance. Support for remote data
entry with intermittent or absent internet connectivity
is a work in progress. The FormEntry module lends
itself to a disconnected environment, since InfoPath
provides a mechanism for saving form data directly
to a file, but there is still a need for keeping remote
patient lists synchronized with the central repository.
Mechanisms for doing this are in development.
9. Low cost – if the system is to be widely available
and adaptable in developing countries, cost must not
prohibit adoption. Ideally, the nuts and bolts of the
system should be downloadable for free.
OpenMRS comprises, almost entirely, open source
components and is itself available for public
consumption through open source licensing.
Everything from the database to the web server we
use can be downloaded off the internet and used for
free. The only aspect of the current system that is not
open source and freely available is InfoPath®, which
was chosen for features not yet matched within the
open source community. Since InfoPath® is a
component of Microsoft® Office, it does not pose a
significant barrier to adoption.
Although the system is freely available, the cost of
content management and expertise needed for
adapting the system for various implementations is
not trivial. While we do not believe that a turnkey
solution is viable, we hope that, as OpenMRS
matures, the barriers to adoption will continue to
decrease, and the costs to implementation will
decrease as well.
LESSONS LEARNED
NOTHING INFORMS DEVELOPMENT MORE
THAN LIFE ITSELF
In the initial implementation of the FormEntry
module, we had patient searches restricted to either a
name lookup or exact identifier. Once we tried using
this algorithm with actual encounter forms, we
discovered that ~25% of the patients could not be
properly identified within the system using data from
the paper form. After adjusting the search algorithm,
we were quickly able to reduce the failure-to-find
rate to near zero. In fact, we were pleased on the first
day of training when data entry assistants could not
only find the patients easily, but also were able to
identify transcription errors in the patient identifier
based on search results within the new system.
USE LIBRARIES WITH A LARGE USERBASE
We have found powerful efficiencies through the
adoption of popular open source development tools
such as Subversion, Eclipse, Hibernate, Spring
Framework, and MySQL. With an adequately large
user base, online support and documentation is

extended through active user forums and published
books.
PARTNERSHIPS CAN CHANGE LIVES
Indiana University and Regenstrief Institute have
been immeasurably rewarded by the partnership with
Moi University in Eldoret, Kenya and through
working with our Kenyan colleagues.
There's an immediate need for partners that have a
deeper level of informatics expertise. We need help
building and maintaining this infrastructure. We've
been asked to scale the early pieces of this project
into Tanzania and Uganda, but, as you can imagine,
once these sites get in the habit of collecting quality
structured data, they're going to want to maximize
their workflows by building and customizing
multiple applications that re-use the data to serve
many different uses and constituencies. Our groups
alone cannot scale this effort appropriately. In fact,
we believe that each country implementing
OpenMRS should have a companion informatics
team in a developed country with significant
informatics/programming expertise to help dive into
the bowels of the OpenMRS source to tailor the
system. We're not building a turnkey system by
design, because we don't consider it feasible in these
types of resource-poor environments.
FUTURE PLANS
The OpenMRS system has been deployed into
Eldoret, Kenya and is planned for use in Tanzania
and Uganda. PIH is adapting OpenMRS to their
needs to serve Rwanda. A team in KwaZulu-Natal is
working to implement OpenMRS within South
Africa.
Our work has just begun.
ACKNOWLEDGEMENTS
We are indebted to the World Health Organization and PEPFAR
for their generous support, and to Dr. Joseph Mamlin for his
leadership and sperm. This project was supported by a grant from
the Rockefeller Foundation and grant number 1-D43-TW01082
from the Fogarty International Center, National Institutes of
Health.

REFERENCES
1. Mamlin BW, Biondich PG. AMPATH Medical
Record System (AMRS): Collaborating Toward an
EMR for Developing Countries. AMIA Annual
Symposium; 2005; 2005.
2. Fraser H, Biondich P, Moodley D, Choi S, Mamlin
B, Szolovits P. Implementing electronic medical
record systems in developing countries. Informatics
in Primary Care. 2005;13:83-95.
3. Wools-Kaloustian K. Community Care
Coordinator Protocol. Unpublished work. Indiana
University; 2006.

AMIA 2006 Symposium Proceedings Page - 533

